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Abstract

We develop in this paper a numerical method to simulate three-dimensional incompressible flows based on a decom-
position of the flow into an axisymmetric part, in terms of the stream function and the circulation, and a non-axisymmetric
part in terms of a potential vector function. The method is specially suited for the study of nonlinear stability of axially
symmetric flows because one may follow neatly the raising of the different non-axisymmetric modes, their nonlinear devel-
opment, and their nonlinear interaction. The numerical technique combines finite differences on a non-uniform grid in the
axial direction, a Chebyshev spectral collocation technique in the radial direction, and a Fourier spectral method in the
azimuthal direction for the non-axisymmetric vector potential. As an example to check the efficiency and accuracy of
the method we apply it to the flow inside a rotating circular pipe, and compare the resulting travelling waves with previous
stability results for this problem, for different values of the Reynolds and the swirl numbers.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear stability analysis and the search for nonlinear wave solutions to the Navier–Stokes equations are
fundamental tools for understanding the mechanisms underlying many flow transitions [1–3]. With the rapid
advance in the speed and capacity of computers, and in the development of more efficient numerical
techniques, these nonlinear analyses rely more and more in the direct numerical simulation of the three-
dimensional (3D) Navier–Stokes equations (e.g. [4,5]).

We consider in this work the case of an incompressible flow which is axisymmetric in its basic state, and
develop a numerical method that allows us to characterize the formation of instabilities, especially non-
axisymmetric ones, their nonlinear development and their mutual interaction. As a matter of fact, any accu-
rate numerical method able to solve the 3D Navier–Stokes equations written in cylindrical polar coordinates
may perform this job. But if the variables and the numerical technique are not appropriate, the task of
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isolating the raising of each individual nonlinear wave, and of tracking their interactions, may be quite difficult
and time consuming, the more so the larger the number of unstable azimuthal modes involved.

One of the most efficient formulations to solve numerically the incompressible Navier–Stokes equations for
axisymmetric (2D) flows is the so called stream function–circulation–vorticity (w–C–g) formulation (see e.g.
[6,7]). In this formulation, the solenoidal constraint for the velocity field is automatically satisfied, the pressure
is absent, and just two flow equations are needed, the azimuthal component of the vorticity equation for the
stream function w, plus the azimuthal component of the momentum equation for the circulation C. However,
to simplify the numerical integration, the first equation is decomposed into two equations, the azimuthal com-
ponent of the vorticity equation in terms of the azimuthal vorticity component g itself, and a Poisson equation
for w in terms of g [7]. A natural extension of this procedure to 3D flows is to add to the above axisymmetric
description the non-axisymmetric part of the velocity field in terms of the vector potential W. Due to the def-
inition of W, only two components of this functions are needed, which are governed by the remaining (radial
and axial) components of the vorticity equation. However, as in the axisymmetric case, from a numerical point
of view it is convenient to write these two equations in terms of the non-axisymmetric components of the vor-
ticity vector, adding three new linear (Poisson) equations for them (see next section for the details).

Numerical methods for 3D viscous flows based in the vorticity-vector potential formulation have been
widely used (e.g. [8–11]). Although the method has some drawbacks in relation to the primitive variables for-
mulation, in particular, the increased number of equations to be handled and the complexity of the boundary
conditions for the vorticity and the vector potential [9,12], it has some advantages for the porpoise of the pres-
ent paper, where the objective is to separate neatly the non-axisymmetric components of the velocity and vor-
ticity fields from their axisymmetric parts, because the axisymmetric part is much more easily computed from
the w–C–g formulation. On the other hand, most of previous vector potential formulations use a solenoidal
constraint for the vector potential and are discretized on staggered grids. But, again, for the porpoise of
the present paper of separating the non-axisymmetric modes, it is more convenient to set to zero the azimuthal
component of the vector potential, instead of the solenoidal constraint. This last technique has been success-
fully used in some linear stability analysis of axisymmetric flows [13,14]. In this paper, we extend this formu-
lation to the whole nonlinear flow equations, and develop a numerical technique to solve them, discretizing the
equations on a non-staggered, non-uniform grid in the radial and axial directions. This is combined with a
Fourier series decomposition in the azimuthal direction, which permits the individual tracking of each azi-
muthal mode even in complicated non-axisymmetric flows.

To check the accuracy of the method we apply it to the flow in a rotating pipe, for which very abundant
information is available in the literature on linear stability, nonlinear travelling waves, and numerical simula-
tions [15–21]. In particular, Sanmiguel-Rojas and Fernandez-Feria [21] addresses the same problem but using
a numerical technique based in primitive variables ðp; vÞ and Dirichlet boundary conditions for the pressure
[22]. This technique is shown to be very efficient in detecting the raising and development of nonlinear insta-
bilities from just numerical noise because only the two first azimuthal modes (n ¼ �1 and n ¼ �2) become
unstable for the cases considered. However, for problems where many azimuthal modes are involved, the task
of separating the contribution of each azimuthal mode and analyzing their mutual interaction may become
cumbersome. On the other hand, from a physical point of view, the rotating pipe problem considered in this
paper as a model problem is not exactly the same considered in Ref. [21], because in that reference the flow was
driven by an axial pressure gradient, while in the present formulation the flow rate is kept constant and the
pressure gradient is allow to vary. As noted previously by Toplosky and Akylas [18], these two formulations
are not equivalent when finite-amplitude perturbations are involved.

2. Formulation

We use in this work non-dimensional variables in cylindrical polar coordinates ðr; h; zÞ, where r and z are
made dimensionless with a characteristic length scale Lc (a given radius of the problem, say). The velocity field
in these coordinates, v ¼ ðu; v;wÞ, which is made dimensionless with a characteristic velocity V c, is split into
two parts, an axisymmetric base flow, Vðr; z; tÞ, plus a perturbation field, Kðr; h; z; tÞ
vðr; h; z; tÞ ¼ Vðr; z; tÞ þ Kðr; h; z; tÞ: ð1Þ
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Time t is made dimensionless with Lc=V c. The base axisymmetric flow is solved through the stream function–
circulation–vorticity formulation (see e.g. [7]):
V � ðU ; V ;W ÞT ¼ r ^ ðwehÞ þ
1

r
Ceh ¼ � 1

r
ow
oz
;
1

r
C;

1

r
ow
or

� �T

; ð2Þ
where w is the stream function, C the circulation, and the superscript T means transposed. The deviation
velocity K is written in terms of the potential vector Wðr; h; z; tÞ
K ¼ r ^W: ð3Þ

The fact that r ^r/ � 0 for any scalar function / can be used to eliminate one of the components of W (the
h-component, say), so that the potential vector can be written with just two components [13]
W ¼ G; 0;Fð ÞT: ð4Þ

Therefore, the complete velocity field can be written as
v ¼
� 1

r ozw
1
r C

1
r orw
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r ohG
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where oi means partial derivative with respect to the variable i.
On the other hand, the vorticity vector is
x � ðxr;xh;xzÞT ¼r^ v ¼r^Vþr^K ¼r^Vþr^r^W ¼r^Vþr � ðrWT �rWÞ �XþH;

ð6Þ

where X is the axisymmetric part of the vorticity, given by
X �
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and H the non-axisymmetric part of the vorticity field, given by
H � ðX ;Y;ZÞT ¼ r � ðrWT �rWÞ ¼
orzF � ozzG � 1

r2 ohhG
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r2 ohG þ 1
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In Eq. (7) we have defined g � Xh as the azimuthal component of the axisymmetric part of the vorticity,
which, together with w and C, completes the axisymmetric description of an incompressible flow in the stream
function–circulation–vorticity formulation [7]. In terms of w, g is given by (from (2) and (7))
g ¼ � 1

r
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�w; r2
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or2
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or
; ð9Þ
which constitutes a Poisson equation for w. The other two equations for the axisymmetric part of the velocity
field V in this formulation are, respectively, the azimuthal component of the momentum equation for C, and
the azimuthal component of the vorticity equation for g. These equations can be written, in non-dimensional
form, as
otv ¼ �uorv�
v
r
ohv� wozv�

uv
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; ð10Þ
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where
Re ¼ V cLc

m
ð12Þ
is the Reynolds number, with m the kinematic viscosity of the fluid. Taking into account the following expres-
sions for the velocity and vorticity components (from (5)–(8))
u ¼ � 1

r
ozwþ

1

r
ohF ; v ¼ C

r
þ ozG � orF ; w ¼ 1

r
orwþ

1

r
ohG; ð13Þ

xr ¼ �
1

r
ozCþ X ; xh ¼ gþ Y; xz ¼

1

r
ozCþ Z ð14Þ
and substituting into (10) and (11), a set of two parabolic equations for the temporal evolution of C and g are
obtained, which, in addition of w;C and g, also involve the non-axisymmetric variables F ;G;X ;Y and Z.
Therefore, one needs five more equations for these unknowns, which are described next.

For X one uses the radial component of the vorticity equation, which can be written as
otxr ¼ �uorxr �
v
r
ohxr � wozxr �
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Substituting (13) and (14), a parabolic equation for the temporal evolution of X is obtained. As for Y, one uses
the azimuthal component of (8), which can be written as
Y � H � eh ¼
1

r
orhG þ

1

r
ohzF �

1

r2
ohG: ð16Þ
This is an explicit equation for Y, once F and G are known.
In the same way, the remaining axial component of the vorticity equation is used for Z
otxz ¼ �uorxz �
v
r
ohxz � wozxz þ xrorwþ

xh

r
ohwþ xzozwþ

1

Re
½r2xz�; ð17Þ
which yields a parabolic equation for the temporal evolution of Z once (13) and (14) are substituted. Finally,
for F and G one may use the radial and the axial components of (8), which can be written as
X � H � er ¼ �
1

r2
ohhG � ozzG þ orzF ; ð18Þ
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r
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1

r
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One of the major difficulties in the vector potential formulation is the determination of the boundary condi-
tions [9,23,24,12]. We discuss them in the context of the flow in a rotating pipe considered in Section 4.

3. Numerical method

3.1. Fourier decomposition

The non-axisymmetric variables (i.e., X ;Y;Z;F ; and G), are discretized in the azimuthal direction h by
means of a complex Fourier decomposition as
F ðr; z; h; tÞ ¼
Xn¼þ1

n¼�1;n6¼0

unðr; z; tÞeinh; ð20Þ

Gðr; z; h; tÞ ¼
Xn¼þ1

n¼�1;n6¼0

vnðr; z; tÞeinh; ð21Þ

X ðr; z; h; tÞ ¼
Xn¼þ1

n¼�1;n6¼0

anðr; z; tÞeinh; ð22Þ
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Yðr; z; h; tÞ ¼
Xn¼þ1

n¼�1;n6¼0

bnðr; z; tÞeinh; ð23Þ

Zðr; z; h; tÞ ¼
Xn¼þ1

n¼�1;n 6¼0

cnðr; z; tÞeinh; ð24Þ
where un; vn; an, bn, and cn are complex functions of ðr; z; tÞ. It must be noted that these variables are
not defined for n ¼ 0, since the axisymmetric mode is transferred into the axisymmetric variables w, C,
and g.

From a numerical point of view, the infinite set of Fourier modes is truncated at some finite wavenumber
N h. Thus, for instance, the two components of the potential vector are written as
Fðr; z; h; tÞ ¼
Xn¼þNh

n¼�Nh;n6¼0

unðr; z; tÞeinh; Gðr; z; h; tÞ ¼
Xn¼þNh

n¼�Nh;n6¼0

vnðr; z; tÞeinh: ð25Þ
Therefore, for each one of these 3D variables there are 2N h unknowns functions of ðr; z; tÞ, so that the same
number of equations (i.e., 10� N h) must be provided. However, taking into account that the velocity and vor-
ticity fields are obviously real fields, one has
f�n ¼ f̂ n; 1 6 n 6 N h; ð26Þ
where f ¼ u; v; a; b; c, and the hat denotes complex conjugate. This halves the number of unknown functions
and equations associated to each non-axisymmetric variable.

To obtain these equations, we substitute the Fourier expansions into the equations described in the above
section and equate terms multiplying einh. For instance, substituting the Fourier expansions of G;F and Z into
(19), one obtains the following set of equations:
�orrun þ
n2

r2
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1

r
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r
orun ¼ cn; 1 6 n 6 N h: ð27Þ
In the same way, from (18) and (16), one obtains
n2

r2
vn � ozzvn þ orzun ¼ an; 1 6 n 6 N h; ð28Þ

bn ¼
in
r
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in
r
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in
r2

vn; 1 6 n 6 N h: ð29Þ
The other linear equation is (9), which only involves axisymmetric variables, and which we rewrite here for
completeness
1

r
orw� ozzw� orrw ¼ rg: ð30Þ
The remaining equations are nonlinear evolution equations coming from (10), (11), (15) and (17). Using the
orthogonality properties of einh together with (26), and truncating the Fourier expansions in N h, as stated
above, one obtain the following equations:
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In these equations k and m vary in the interval �N h 6 k;m 6 þN h, with k;m 6¼ 0.

3.2. Discretization and numerical scheme

The set of 5N h þ 3 scalar equations (27)–(34) given above, together with the corresponding boundary con-
ditions to be discussed in the next section, are discretized in Nr þ 1 nodes in the radial direction and N z þ 1
nodes in the axial direction. In particular, in the radial direction we use a Chebyshev pseudo-spectral collo-
cation method [25], while in the axial direction a second-order finite-differences scheme on a non-uniform grid
[26] is used, each one of them concentrating the nodes in the regions where the radial and axial gradients of the
variables are the greatest.

The numerical scheme for solving the temporal evolution of the flow variables governed by the above set of
coupled equations is the following. We first obtain the axisymmetric flow by solving (30)–(32) with appropriate
boundary and initial conditions and setting all the non-axisymmetric variables to zero (i.e., using only the first
lines in Eqs. (31) and (32)). The numerical procedure is very similar to that described in Ref. [7]. Given the
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solution at a given instant t ¼ sDt, the temporal derivatives in (31) and (32) are approximated with a semi-
implicit, two step predictor–corrector scheme with second order error in time. Viscous terms in these equations
are discretized implicitly, while the convective terms explicitly. Once gsþ1 and Csþ1 are known, wsþ1 is obtained
from the Poisson equation (30), which is solved with an ADI based technique, where the radial derivatives are
discretized implicitly and the axial derivatives explicitly, and using standard solvers for band matrices with LU
factorization from Blas and Lapack packages. The numerical procedure is started at t ¼ 0 from some initial
condition (e.g. the flow at rest) until an axisymmetric steady state is reached.

Once this axisymmetric steady state is obtained, we solve the whole set of non-axisymmetric equations with
appropriate boundary conditions (see next section), and initial conditions given by the steady axisymmetric
flow for w;C and g, together with random noise with a given intensity level for all the non-axisymmetric
variables. Known the solution at a given instant s, the parabolic equations (31) and (32) for C and g are solved
as described above, but now including the non-axisymmetric terms in the right-hand side, together with the
parabolic equations (33) and (34) for an and cn, which are solved with the same semi-implicit, two step predic-
tor–corrector scheme used for C and g. With gsþ1;Csþ1; asþ1

n and csþ1
n known, wsþ1 is obtained from (30) as

described above, while usþ1
n and vsþ1

n are solved from the similar Poisson-like equations (27), (28). These
two sets of coupled equations are solved by means of an iterative SOR scheme (e.g. [12]), for which the opti-
mum value of the under-relaxation factor is obtained with some preliminary tests. Finally, bsþ1

n is obtained
from (29), which is an explicit equation for bn once un and vn are known at the instant sþ 1.
4. Flow in a rotating pipe. Boundary conditions

As a model problem to check the numerical technique described above we consider the rotating Hagen–
Poiseuille flow (RHPF). Basically, a flow rate Q enters a pipe of unit radius (the characteristic length is then
Lc ¼ R, where R is the dimensional radius of the pipe) which rotates with angular velocity X. As the charac-
teristic velocity we use V c ¼ 2Q=ðpR2Þ, fixed at the inlet section of the pipe z ¼ 0; i.e., V c is the maximum axial
velocity at the axis in a Hagen–Poiseuille flow with flow rate Q, which is twice the mean velocity at the inlet
section. Thus, the Reynolds number is the usual one in pipe flows, based on the mean velocity ðV c=2Þ and the
pipe diameter (2R)
Re � V cLc

m
¼ 2Q

pRm
: ð35Þ
The other physical parameter of the problem is the swirl number
S � XLc

V c
¼ pXR3

2Q
: ð36Þ
Alternatively, we use a rotation based Reynolds number Reh, instead of S, defined as
Reh �
XL2

c

m
¼ XR2

m
¼ ReS: ð37Þ
There exists only one additional (geometrical) non-dimensional parameter associated to the pipe length,
L � Lz=R, where Lz is the dimensional length of the pipe. However, this parameter is irrelevant because we
shall choose L large enough for the results to be independent of it (we shall use L ¼ 200 in all the results re-
ported in the next section).

We describe next the boundary conditions needed to solve the equations in the domain 0 6 r 6 1; 0 6 h 6 2p,
and 0 6 z 6 L, paying special attention to the boundary conditions for the components of the vorticity and
the vector potential, which are not so intuitive as those for the velocity components or the stream function.

4.1. Inlet ðz ¼ 0Þ

In the inlet section of the pipe the velocity profile is given, and it is supposed to be axisymmetric,
v ¼ Vin � ½U inðrÞ; V inðrÞ;W inðrÞ�T. In particular, we shall assume that the flow enters the pipe with an
unperturbed RHPF, i.e., U in ¼ 0; V in ¼ Sr, and W in ¼ 1� r2. Though we are going to use this inlet flow in
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the computations reported in the next section, the formulation given below is also valid for a general axisym-
metric velocity profile at the inlet, so that a different inlet velocity field Vin may be used.

With this velocity profile, the axisymmetric variables w, C and g at the inlet are given by (see (2) and
(9))
winðrÞ ¼
Z r

0

.W inð.Þd. ¼ r2

2
1� r2

2

� �
; ð38Þ

CinðrÞ ¼ rV inðrÞ ¼ Sr2; ginðrÞ ¼ orW inðrÞ ¼ �2r; ð39Þ
where it has been assumed that w ¼ 0 at the axis.
On the other hand, since we assume that the perturbations vanish at the inlet
Kin ¼ r ^ ðF in; 0;GinÞ ¼ 0; ð40Þ

using the definitions of their components through the Fourier expansions and Eq. (8), these conditions yield
un ¼ 0; vn ¼ 0; ozvn ¼ 0; an ¼ �ozzvn þ orzun; bn ¼
in
r

ozun; cn ¼ 0; 1 6 n 6 N h: ð41Þ
4.2. Pipe wall ðr ¼ 1Þ

At the pipe wall both the axial and the radial velocity components vanish, and the azimuthal component is
given by the rotation rate of the pipe, V R ¼ V in ðr ¼ 1Þ ¼ S; i.e.,
vR ¼ ð0; V R; 0ÞT ¼ ð�ozw;C; orwÞT þ ðohF ; ozG � orF ;�ohGÞT: ð42Þ

For the axisymmetric variables, taking into account the inlet conditions, one has
w ¼ winðr ¼ 1Þ ¼ 1

4
; C ¼ V R ¼ S; ð43Þ

g ¼ �orrw with orw ¼ 0: ð44Þ
For the non-axisymmetric part, making use of the Fourier expansions and integrating through the azimuthal
direction taking into account the orthogonality properties of the Fourier modes, Eq. (42) together with Eq. (8)
yield
un ¼ 0; vn ¼ 0; orun ¼ 0; an ¼ 0; bn ¼
in
r

orvn; cn ¼ orzvn � orrun; 1 6 n 6 N h: ð45Þ
4.3. Outflow ðz ¼ LÞ

For the axisymmetric variables ðn ¼ 0Þ the usual condition of quasi-cylindrical flow (see e.g. [27,28]) is used:
ozzw ¼ 0; ozzC ¼ 0; ozzg ¼ 0: ð46Þ

L should be large enough for the computed flow be independent of this boundary condition. For the remain-
ing 3D variables we use a nonreflecting (radiation) boundary condition [29,30]
ohf þ Cozf ¼ 0; f ¼ un; vn; an; bncn; 1 6 n 6 N h; ð47Þ

where the velocity C is set as the axial velocity at the axis ðr ¼ 0Þ of the base (axisymmetric) flow at the outlet
section. Slight different values of C were checked without affecting appreciably to the results. As we shall see,
this condition allows for the unconstraint exit of non-axisymmetric perturbations through the outlet section,
avoiding numerical instabilities or spurious wave reflections [30].

4.4. Axis ðr ¼ 0Þ

Regularity at the axis yields the following boundary conditions:
w ¼ 0; g ¼ 0; C ¼ 0;
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un ¼ 0; jnj ¼ 1;

un ¼ orun ¼ 0; jnj 6¼ 1;

vn ¼ orvn ¼ 0; 1 6 n 6 N h;

an ¼
1
2
orrvn þ orzun for jnj ¼ 1;

1
2
orrvn for jnj 6¼ 1;

(

bn ¼
ðinÞ 1

2
orrvn þ orzun

� �
for jnj ¼ 1;

ðinÞ 1
2
orrvn

� �
for jnj 6¼ 1;

(

cn ¼
� 3

2
orrun for jnj ¼ 1;

orrun
n2

2
� 2

� 	
for jnj 6¼ 1:

8<
:

4.5. Initial conditions

As commented on above, we first obtain an axisymmetric steady state solution by integrating the axi-
symmetric equations (i.e., with the perturbations un; vn; an; bn; cn set equal to zero in (30)–(32)). In the pres-
ent example, this axisymmetric flow consists on a Hagen–Poiseuille flow superimposed to a rigid-body
rotation, given by the inlet flow (38) and (39), which also coincides with the initial condition. Then we inte-
grate the full non-axisymmetric equations (27)–(34) using this axisymmetric steady state solution as the ini-
tial conditions for the axisymmetric variables w;C; g, and a constant, very small, initial value e for all the
non-axisymmetric variables un; vn; an; bn; cn. In the results reported below we have used e ¼ 10�10. As we
shall see, this initial noise in the non-axisymmetric variables either goes to zero everywhere (within numer-
ical round-off errors) if the axisymmetric flow is stable, or evolves to coherent travelling wave form if the
flow is unstable.
5. Results

To check the accuracy of the numerical method and the numerical code we have selected Reh ¼ 100 and
three values of the Reynolds numbers, Re = 75, 100, and 125 (they correspond to S = 1.33, 1, and 0.8, respec-
tively). According to the linear stability theory for this problem, the first case (Re = 75 with Reh ¼ 100) is sta-
ble (see Fig. 1), the second one (Re = 100) is unstable, but just above the neutral curve, so that only the first
non-axisymmetric mode n = �1 is unstable, while the third case ðRe ¼ 125Þ is well above the neutral curve,
with two unstable modes, n = �1 and n = �2 (see Fig. 1).

In all the computations reported below we use L ¼ 200 and five azimuthal modes ðN h ¼ 5Þ, which are
shown to be enough to capture the evolution of all the raising non-axisymmetric perturbations (see below).
In the radial and axial directions we use N r ¼ 9 and Nz between 200 and 1500, depending on the Reynolds
number. We have checked the numerical results by using larger values of N r and N z in some computations.
Finally, the Dt used lie in the interval 2:5� 10�3–5:0� 10�3, also depending on the Reynolds number.

The results are given in terms of the perturbation velocity K, whose components can be written, from (5)
and (25), (26), as
Kr ¼
1

r
ohF ’

1

r
R

XNh

n¼�Nh;n 6¼0

nuneinh

" #
; ð48Þ

Kh ¼ ozG � orF ’ R
XNh

n¼�Nh;n6¼0

ðozvn � orunÞeinh

" #
; ð49Þ

Kz ¼ �
1

r
ohG ’ �

1

r
R

XNh

n¼�Nh;n 6¼0

nvneinh

" #
: ð50Þ
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The results for Re ¼ 75 are shown in Figs. 2 and 3. The initial non-axisymmetric perturbation, consisting on a
constant noise of value e ¼ 10�10, first decays and then develops into a coherent travelling wave that propa-
gates downstream. As it is observed in Fig. 2, where Kr ðr ¼ 0:75; h ¼ ½0; p�; z; tÞ is plotted as a function of time
t at four different axial locations z, the amplitude of this wave decays along the pipe, in accordance with the
linear stability analysis (Fig. 1). In fact, the amplitude of the travelling wave decays more than four order of
magnitude along the pipe (note the different scales in each part-figure of Fig. 2). This decay is better appre-
ciated in Fig. 3, where we plot the maximum value throughout the pipe of each azimuthal component n of
the different perturbation velocity components, Kr;n;Kh;n, and Kz;n. All the azimuthal components decay very
fast, the faster the larger jnj. In fact, for this case we could have obtain practically the same results taking into
account only the first two azimuthal modes ðN h ¼ 2Þ, because the remaining modes decay so fast to the round-
off numerical error level that their contribution is completely negligible. As we shall see, the same can be said
of all the remaining cases reported below. It is also worth mentioning that the outflow boundary condition
used at z ¼ L ¼ 200 allows the free exit of the travelling waves formed inside the pipe (see Fig. 2(d)), without
distorting or affecting them in any appreciable form.
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Fig. 2. Temporal evolution of the radial velocity perturbation Kr for Reh ¼ 100 and Re ¼ 75 at r ¼ 0:75, for h ¼ 0 (continuous lines) and
h ¼ p (dashed lines), and different axial locations z as indicated in each sub-figure.
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The following case Re ¼ 100 is convectively unstable (see Fig. 1). The numerical results are shown in Figs. 4
and 5. The amplitude of the wave formed after the reorganization of the initial noise increases as it travels
along the pipe (Fig. 4), but only slightly (just one order of magnitude) in agreement with the fact that this case
is very close to the neutral curve (Fig. 1). Also in agreement with the linear stability analysis is the fact that
only the azimuthal mode n ¼ �1 is unstable: As shown in Fig. 5, the amplitude of the mode n ¼ �1 increases
until it saturates at t � 275 to ðKr;nÞmax ’ 3� 10�9, while all the remaining azimuthal modes decay in time.

To check the accuracy of the method we can compare quantitatively the numerical results for the frequency,
the wavelength, and the group velocity of the perturbations with the predictions from the linear stability
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Fig. 4. As in Fig. 2, but for Re ¼ 100.
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theory. Thus, for instance, we can obtain the frequency of the amplifying travelling wave from Fig. 4(d), which
is zoomed in Fig. 6. From it we obtain a non-dimensional period T N ’ 8:894, which yields a frequency
xN ¼ 2p=T N ’ 0:7065. This value practically coincide with that corresponding to the most unstable frequency
for the most unstable mode n ¼ �1 obtained from the linear stability theory for this case Reh ¼ 100 and
Re ¼ 100 [17]: xS ’ 0:7098. The agreement is also very good for the wavenumber: From Fig. 7, which shows
a picture of the travelling wave in the pipe at the instant t ¼ 130, one may compute the non-dimensional wave-
length of the travelling wave, kN ’ 13:72, yielding a numerical wavenumber aN ¼ 2p=kN ’ 0:4581, very close
to the linear stability value for the most unstable mode, aS ’ 0:432. The agreement is better for the group
velocity of the travelling waves, which from Fig. 4 can be computed to yield cN ’ 0:734, while the group veloc-
ity of the most unstable perturbation n ¼ �1 from the linear stability theory is cS ’ 0:730 [17].

The results for the last case considered ðRe ¼ 125Þ are shown in Figs. 8 and 9. The axisymmetric flow is now
more unstable than the former case and the amplitude of the travelling wave increases by five order of mag-
nitude as it travels along the pipe (see Fig. 8). In addition, the mode n ¼ �2 is also unstable in this case (see
Fig. 9), in agreement with the linear stability analysis (Fig. 1). But the dominant unstable mode is still n ¼ �1,
which, according to Fig. 9, has an amplitude several order of magnitude larger than that of the mode n ¼ �2
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Fig. 6. Zoom of Fig. 4(d).
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for every time (the remaining modes n ¼ �3;�4;�5 are stable and decay very fast in time). The frequency and
group velocity of the travelling waves found numerically, xN ’ 0:4822 and cN ’ 0:6745, respectively, agree
also very well with those obtained from the linear stability analysis for the most unstable mode with
n ¼ �1 [17]: xS ’ 0:4811 and cS ’ 0:690.

6. Conclusion

We have developed a numerical method for solving the incompressible Navier–Stokes equations in cylin-
drical polar coordinates based in the stream function–circulation–azimuthal vorticity formulation for the axi-
symmetric part, and on the vector potential–vorticity formulation for the non-axisymmetric part. The method
is specially suited for the study of nonlinear stability of axisymmetric flows because the axisymmetric base flow
is straightforwardly obtained at very low numerical cost, and because the evolution of each non-axisymmetric
unstable mode can be easily followed separately. We have checked the accuracy and efficiency of the method
by applying it to the flow in a rotating pipe, finding an excellent quantitative agreement between the non-axi-
symmetric travelling waves arising numerically for several Reynolds numbers with the predictions from sta-
bility theory. Although the formulation of the method is rather involved in comparison with, for instance,
a method based in primitive variables, especially in relation to the boundary conditions, it has advantages
for problems where many azimuthal modes become unstable, because their nonlinear development and mutual
interactions can be followed as easily as in problems where just the few first azimuthal modes become unstable
(such as the rotating pipe example considered here). Thus, we think that the method may have some advan-
tages in relation to other available numerical methods for the study of nonlinear stability in complex swirling
jets and wakes at moderately high Reynolds numbers.
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